TVTools - Performance Issue Report
Performance Issue Report
Media Selection Modal - Continuous Activity Bug
Date: December 18, 2025 | Priority: High
Executive Summary
The media selection modal exhibits abnormal behavior: continuous JavaScript execution and network requests even when idle. This is causing progressive performance degradation over time, with the modal becoming increasingly slower after repeated open/close cycles.
Problem Description
Observed Behavior
When the modal is opened and left idle (no user interaction), the Chrome DevTools reveal:
• Continuous network requests to blob: URLs (246+ requests observed in seconds)
• Repeated JavaScript execution cycles every 200-300ms
• Constant re-rendering of components
• Progressive slowdown after 50+ open/close cycles
Expected Behavior
An idle modal should show a flat timeline with zero network activity, zero JavaScript execution, and zero re-renders. The Performance tab should display a horizontal line after the initial load.
Performance Analysis Evidence
Two Performance recordings were captured over ~6 seconds with the modal open and idle:
	Metric
	Cache Disabled
	Cache Enabled

	Recording Duration
	5.89 seconds
	6.25 seconds

	Script Execution
	289 ms
	200 ms

	Loading
	139 ms
	146 ms

	Expected (Idle)
	~0 ms
	~0 ms

Key Finding: The cache setting has no significant impact on the issue, confirming this is a code-level problem, not a network/resource loading issue.
Probable Root Causes
Based on the symptoms, the issue is likely caused by one or more of the following:
1. Uncleared Interval or Polling
A setInterval() or RxJS interval() that continues running without being cleared in ngOnDestroy().
2. Memory Leak from Blob URLs
Repeated calls to URL.createObjectURL() without corresponding URL.revokeObjectURL() calls, causing memory accumulation.
3. Unsubscribed RxJS Observables
Subscriptions that continue emitting after the component should be idle, triggering Angular's change detection repeatedly.
4. Missing trackBy in *ngFor
Without trackBy, Angular recreates all DOM elements on each change detection cycle, regenerating blob URLs unnecessarily.
5. DevExtreme Component Misconfiguration
Some DevExtreme components (dxGallery, dxList, dxTileView) have auto-refresh or animation options that may cause continuous updates if not properly configured.
Recommended Actions
1. Memory Profiling: Use Chrome DevTools Memory tab to take heap snapshots before and after multiple modal open/close cycles. Look for detached DOM nodes and growing object counts.
2. Search for Intervals: Grep the codebase for setInterval, interval(, timer(and verify each has proper cleanup in ngOnDestroy().
3. Audit Blob URL Usage: Search for createObjectURL and ensure every call has a matching revokeObjectURL when the component is destroyed or the URL is no longer needed.
4. Add trackBy Functions: Ensure all *ngFor directives displaying images have trackBy functions to prevent unnecessary re-creation of elements.
5. Review DevExtreme Config: Check DevExtreme component options for any refresh intervals, animations, or polling behaviors that should be disabled for static content display.
6. Implement OnPush Strategy: Consider using ChangeDetectionStrategy.OnPush for the modal component to reduce unnecessary change detection cycles.
Conclusion
This behavior is not normal for an idle Angular modal. The continuous activity shown in the Performance recordings indicates a bug that needs to be fixed. The identical behavior with cache enabled/disabled confirms this is an application code issue, not a browser or network problem.
Impact: Left unaddressed, this issue will cause increasing memory consumption, degraded user experience, and potential browser crashes during extended use sessions.
Page of
